SELECT EQUIPMENT
X

E-mail a friend


UV DISINFECTION TECHNOLOGY


Ultraviolet technology for water, air and surface disinfection is based on germicidal effect of UV-C radiation. 

UV radiation is electromagnetic radiation between x-rays and visible light. UV wavelengths range from 100 to 400 nanometer.

The UV wavelengths are divided in 4 groups, each with a different germicidal effect – UV-A (315–400 nm), UV-B (280–315 nm), UV-C (200–280 nm) and Vacuum UV (100–200 nm).

Ultraviolet in
electromagnetic
spectrum

Within the UV spectrum, UV-C range is considered the strongest UV radiation, which is easily absorbed by DNA, RNA and proteins. This range is often called germicidal due to its high disinfection efficiency against bacteria and viruses. The highest germicidal effect occurs at 205-280 nm and the maximum germicidal sensitivity of microorganisms at 265 nm. 

The germicidal effect is based on photon absorption by DNA and RNA molecules. Photochemical reaction provokes dimerization of DNA and RNA bonds, which inhibits the ability of microorganisms to replicate. This process is known as inactivation of microorganisms.

Mechanism of
UV disinfection


UV disinfection technology can be applied for potable water supply, wastewater treatment as well as for air and surface disinfection applications.

The major advantages of this technology:

  • high efficiency against a wide range of microorganisms including chlorine resistant ones (viruses and protozoa oocysts);
  • no impact on physical, chemical and organoleptic properties of water and air; no by-products; no dangerous overdosing;
  • low capital costs, power consumption and operational costs;
  • UV systems are compact and easy to operate; no need for special operational safety precautions.

Main industrial available sources of UV radiation are low pressure amalgam lamps and mercury medium pressure lamps. Medium pressure lamp technology have higher power per lamp (several kW) but significant lower efficiency (9-12%) in comparison to low pressure lamp technology with efficiencies between of 35-40% and power per lamp up to 1000 watt.

UV systems equipped with amalgam lamp technology generally have a little larger physical footprint but they are significantly more energy efficient.

The design of UV application depends on the required UV dose, flow rate and physical and chemical parameters of media to be disinfected. The facility design criteria, flexible, economical and sustainable operation are also the decisive design parameters.